Experiment HS-1: Breathing Parameters at Rest and After Exercise

Equipment Required

PC or Mac Computer
IXTA, USB cable, IXTA power supply
A-FH-300L Spirometer flow head and plastic tubes
A-SRK Student Respiratory Kit

The nose clip is optional. You can just hold your nose if that is easier. ONLY breathe through your mouth.

Spirometer Setup

- 1. Locate the A-FH-300L flow head and the airflow tubing in the iWorx kit Firmly push the two air flow tubes onto the two outlets on the A-FH-300L flow head.
- 2. Carefully connect the other ends of the two air flow tubes into the Channel A1 input of the IXTA. Connect the red port to the red connector on the tubing.

Figure HS-1-S1: The student respiratory kit and A-FH-300L flow head and the airflow tubing. The blue filter attaches to the flow head.

Before Starting

- 1. Please read the procedures for each exercise completely before beginning the experiment. You should have a good understanding of how to perform these exercises before making recordings.
- 2. The spirometer will monitor breathing from a subject. It is important that the subject is healthy and has no history of respiratory or cardiovascular problems.
- 3. The outlets on the flow head should always be in the upright position to avoid problems with condensation developing in the airflow tubes.

4. To reduce turbulence, the subject should place their lips around the outside of the opening of the flow head, or around the cardboard mouthpiece or bacterial filter attached to the flow head.

Figure HS-1-S2: The flow head connected to the internal spirometer of the IXTA unit.

- 5. Use a nose-clip to prevent air from entering or leaving the nose as the subject is breathing. Air that passes through the nose causes errors in the lung volume values.
- 6. Check the calibration of your spirometer on the Lung Volumes channel:
 - Click on the **black** words Vol.Human (Air Flow), that are next to the title of the Lung Volumes channel, to open the computed function pull-down menu.
 - Select Setup Function from this pull-down menu to open the Spirometer Calibration Dialog window.
 - Check that the internal spirometer is being used by making sure the Type of Spirometer is the IXTA and the flow head is the 300L.
 - Make sure the reset time is set to "No Reset", and the first 10 seconds of the recording are used to zero the baseline of the Lung Volumes channel.
 - Enter 37 for temperature of exhaled air.
 - Click OK.
- 7. Allow the IXTA to warm up for 10 minutes before recording for the first time.
- 8. Make sure the subject is breathing through the <u>red port side</u> of the flow head.

Experiment HS-1: Breathing Parameters at Rest and After Exercise

Exercise 1: Breathing While Resting

Aim: To measure breathing parameters in a healthy, resting subject.

Approximate Time: 20 minutes

Procedure

- 1. Instruct the subject to:
 - Sit quietly and become accustomed to breathing through the spirometer flow head.
 - Make sure the subject is breathing through the red port side of the flow head.
 - Breathe normally before any recordings are made.
 - Hold the flow head so that its outlets are pointed up.
 - Remove the flow head from their mouth and hold it at the mouth level in a position that prevents a breath from moving through the flow head.

Note: The LabScribe software will zero the Lung Volumes channel during the first ten seconds of recording. No air should be moving through the flow head during this time.

- 2. Type **Resting** in the Mark box.
- 3. Click Record. After waiting <u>at least ten seconds</u> for the Lung Volumes channel to zero, have the subject place the flow head in their mouth and begin breathing. Click the mark button to mark the recording.
- 4. Click the AutoScale All button. Notice the slowly moving wave on the Lung Volumes channel. Record five-six breaths, which normally takes about forty-five seconds to record.
- 5. Type **Forced** in the Mark box. Click the mark button as the subject inhales as deeply as possible to reach their maximum inhalation volume. Then, as quickly as possible the subject should exhale as much as possible, Do not hold it in. Then do another inhale before returning to breathing normally. Make sure to blow all the air out of the maximum exhale.
- 6. After the forced exhalation is complete, the subject should continue to breathe normally through the spirometer for five-six breath cycles.
- 7. Click Stop to halt recording. Your data may look like the image below.
- 8. Select Save As in the File menu, type a name for the file. Click on the Save button to save the data file.

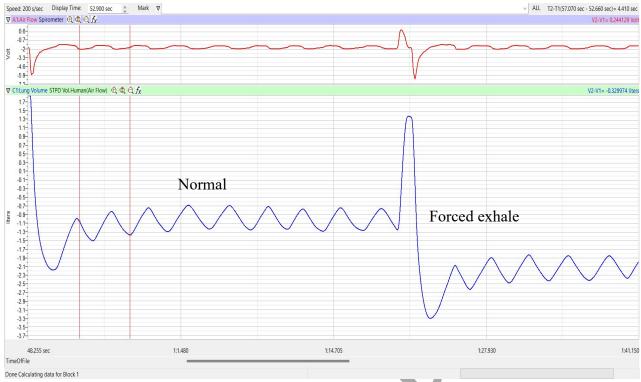


Figure HS-1-L1: Air flow and lung volumes of the normal and forced breathing of a subject at rest.

Data Analysis-Normal Breathing at Rest

- 1. Scroll through the recording and find the section of data recorded when the subject was breathing while resting.
- 2. Use the Display Time icons to adjust the Display Time of the Main window to show the complete breathing cycles on the Main window. The adjacent breathing cycles can also be selected by:
 - Placing the cursors on either side of a group of complete breathing cycles; and
 - Clicking the Zoom between Cursors button on the LabScribe toolbar to expand the selected breathing cycles to the width of the Main window.

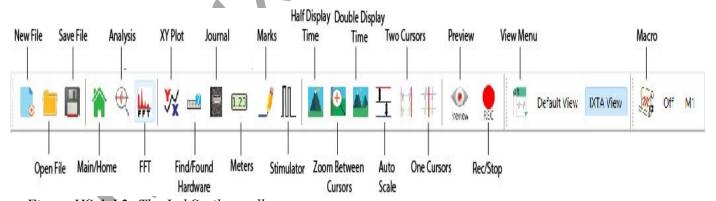


Figure HS-1-L2: The LabScribe toolbar.

- 3. Click on the Analysis window icon in the toolbar to transfer the data displayed in the Main window to the Analysis window.
- 4. Look at the Function Table that is above the uppermost channel displayed in the Analysis window. The mathematical functions, V2-V1, Max_dv/dt, Min_dv/dt, and T2-T1 should appear in this table. Values for V2-V1, Max_dv/dt, Min_dv/dt, and T2-T1 on each channel are seen in the table across the top margin of each channel.
- 5. On the Lung Volumes channel, use the mouse to click on and drag the cursors to specific points on the recording to measure the following volumes:
 - **Tidal Volume (TV)**, which is the volume of air inhaled or exhaled during a normal breathing cycle. Place one cursor in the trough prior to inhalation, and the second cursor on the peak of the cycle. The value for the V2-V1 function on the Lung Volumes channel is the tidal volume.
 - Maximum Inspiratory Flow Rate, which is the maximum rate of air movement during inhalation. Leave the cursors in the same positions used to measure the tidal volume. The value for the Max_dv/dt function on the Lung Volumes channel is the maximum inspiratory flow rate of that breath cycle.

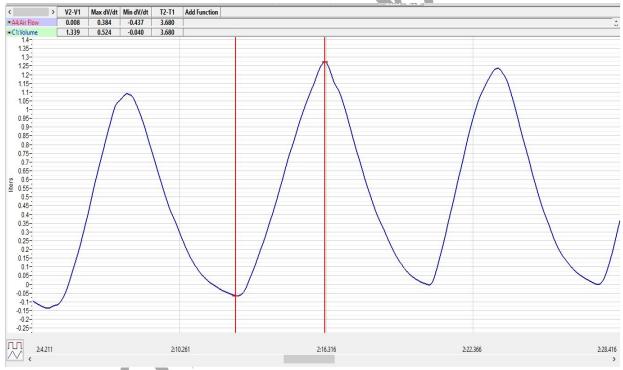


Figure HS-1-L3: Breathing pattern of a subject at rest, displayed on the Lung Volumes channel in the Analysis window. The cursors are positioned on the trough and the peak of the breath cycle to measure the tidal volume (TV) with V2-V1 function and the maximum inspiratory flow rate with the Max_dv/dt function.

• Maximum Expiratory Flow Rate, which is the maximum rate of air movement during exhalation. Place one cursor on the peak of the breath cycle, and the second cursor in the trough to the right of that peak. The value for the Min_dv/dt function on the Lung Volumes channel is the maximum expiratory flow rate of that breath cycle. This function is used since the exhalation portion of the breath cycle has a negative slope.

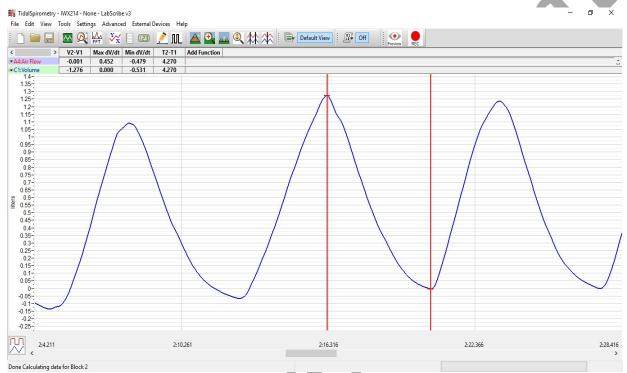


Figure HS-1-L4: Breathing pattern of a subject at rest, displayed on the Lung Volumes channel in the Analysis window. The cursors are positioned on the peak of the breath cycle and the trough of the succeeding cycle to measure the maximum expiratory flow rate with the Min dv/dt function.

- 6. Once the cursors are placed in the correct positions for determining the volumes and rates of each breath cycle, the values of the parameters in the Function Table can be recorded in the online notebook of LabScribe by typing their names and values directly into the Journal.
- 7. The functions in the channel pull-down menus of the Analysis window can also be used to enter the names and values of the parameters from the recording to the Journal. To use these functions:
 - Place the cursors at the locations used to measure the volumes and rates of the breath cycle.
 - Transfer the names of the mathematical functions used to determine the volumes and rates to the Journal using the Add Title to Journal function in the Lung Volumes Channel pull-down menu.
 - Transfer the values for the volumes and rates to the Journal using the Add Ch. Data to Journal function in the Lung Volumes Channel pull-down menu.

• **Breath Period**, which is the duration of each breathing cycle. To measure the breath period of the subject during breathing at rest, place one cursor on a peak of a breath cycle, and the second cursor on the peak of an adjacent cycle. The value for T2-T1 on the Lung Volumes channel is the period of that breath cycle.

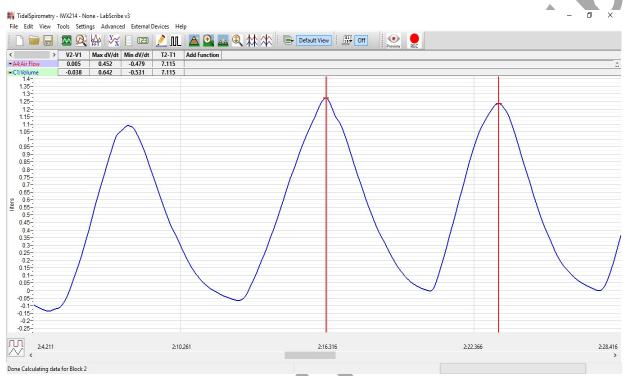


Figure HS-1-L5: Normal breathing pattern of a subject at rest, displayed on the Lung Volumes channel in the Analysis window. The cursors are positioned on the peaks of successive breath cycles to measure the breath period with the T2-T1 function.

- 8. Record the values in the Journal using the one of the techniques described in Step 7.
- 9. Repeat the measurements of tidal volume, maximum inspiratory flow rate, maximum expiratory flow rate, and breath period on two additional normal breath cycles.
- 10. Average the three values obtained for each parameter and enter the means in a table in the Journal. You can open and close the Journal by clicking on its icon on the LabScribe toolbar.
- 11. Record the means for the tidal volume, rates, and breath period in Table 2.
- 12. Calculate the normal breathing rate of the subject at rest using the following equation:

 Breath Rate (breaths/minute) = 60 (seconds/minute) / mean breath period (sec/breath)
- 13. Multiply the mean tidal volume by the breathing rate to calculate the volume of air passing in and out of the resting subject's lungs each minute.
- 14. Record the values for these calculations in the table.

Data Analysis-Forced Expiration at Rest

- 1. Use the slider or the arrows on the scroll bar, at the bottom of the Analysis window, to position data recorded when the subject exhaled with maximum force in the window.
- 2. Use the Display Time icons to adjust the Display Time of the Analysis window to show the forced expiration curve and the two normal breaths both before and after the force expiration curve, on the same window.
- 4. Place the cursors on the forced expiration data displayed on the Lung Volumes channel to measure the following volumes and rates using the V2-V1, T2-T1, Max_dv/dt, and Min_dv/dt functions. Check the labels to identify the volumes and rates that you will measure:
 - Inspiratory Reserve Volume (IRV), by placing one cursor on the peak of the normal breath prior to the maximum inhalation and the second cursor on the peak of the forced breath cycle. The value for the V2-V1 function on the Lung Volumes channel is the inspiratory reserve volume.
 - Forced Inspiratory Flow Rate, by keeping the cursors in the same positions used for measuring IRV. The value for the Max_dv/dt function on the Lung Volumes channel is the forced inspiratory flow rate.
 - Forced Vital Capacity (FVC), by placing one cursor on the peak of the forced breath cycle and the second cursor on the flat line after the subject has expelled all the air from their lungs. The value for the V2-V1 function on the Lung Volumes channel is the forced vital capacity.
 - Forced Expiratory Flow Rate, by keeping the cursors in the same positions used for measuring VC. The value for the Min_dv/dt function on the Lung Volumes channel is the forced expiratory flow rate.
 - Expiratory Reserve Volume (ERV), by placing one cursor in the trough before maximal inhalation and the second cursor on the flat line after subject has expelled all the air from their lungs. The value for the V2-V1 function on the Lung Volumes channel is the expiratory reserve volume.
 - Forced Expiratory Volume at 1 Second (FEV₁), by placing one cursor on the peak of the maximum inhalation and the second cursor on the data point that is one second after the peak. Use the T2-T1 function to determine the data point that is one second after the peak. The value for the V2-V1 function on the Lung Volumes channel is the forced expiratory volume at one second.
 - Forced Expiratory Volume at 3 Seconds (FEV₃), by placing one cursor on the peak of the maximum inhalation and the second cursor on the data point that is three seconds after the peak. Use the T2-T1 function to determine the data point that is three seconds after the peak. The value for the V2-V1 function on the Lung Volumes channel is the forced expiratory volume at three seconds.

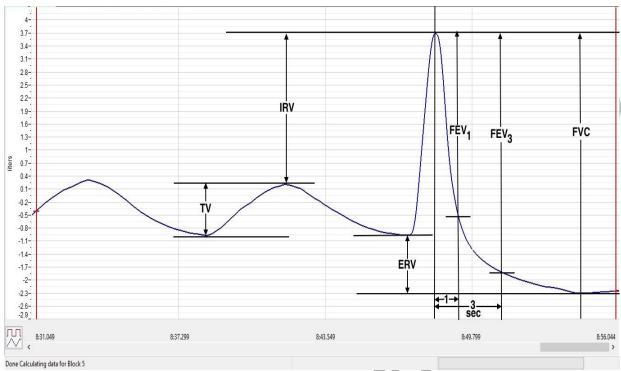


Figure HS-1-L6: Recording of normal and forced lung volumes taken from a subject at rest, and displayed on the Lung Volumes channel in the Analysis window. The normal breathing cycles are to the left of the forced inspiration and expiration. Lines and labels were added to figure to indicate to volumes that should be measured for each subject: Tidal Volume (TV), Inspiratory Reserve Volume (IRV), Expiratory Reserve Volume (ERV), Vital Capacity (VC), and Forced Expiratory Volume at 1 Second (FEV₁).

- 5. Record these volumes and rates in Table 3.
- 6. Calculate the subject's FEV₁/FVC ratio by dividing the subject's FEV₁ value by their FVC value.
- 7. Calculate the subject's FEV₃/FVC ratio by dividing the subject's FEV₃ value by their FVC value.
- 8. Compare the FEV₁/FVC and FEV₃/FVC ratios of the subject to the normal values of 0.80 and 0.95, respectively, for young healthy adults. Both of these ratios decrease with age.
 - In obstructive airway diseases, like asthma, bronchitis, or emphysema, both FVC and FEV₁ are reduced, and FEV₁/FVC ratios are usually less than 0.70.
 - In restrictive lung diseases, like fibrosis, FVC is reduced. But, because of the low compliance and high recoil of the lungs, the FEV₁/FVC ratio may be normal (~0.80) or greater than normal (>0.85).
- 9. Record the FEV₁/FVC and FEV₃/FVC ratios in the table.
- 10. Record the volumes, rates, and ratios from your subject in the table being compiled for all the subjects in the class.

Table HS-1-L1: Lung Volumes for an Average- Sized Human Male (70kg).

Volumes	Volume (mls)
Tidal Volume (TV)	500
Inspiratory Reserve Volume (IRV)	3100
Expiratory Reserve Volume (ERV)	1200
Forced Vital Capacity (FVC)	4800
Residual Volume (RV)	1200

Exercise 2: Breathing Immediately After Exercise

Aim: To measure the breathing parameters of the same healthy subject after exercise.

Approximate Time: 30 minutes

Procedure

REMINDER – no air should be moving through the flow head for the first 10 seconds.

- 1. In this exercise, use the same healthy subject whose breathing parameters at rest were measured in Exercise 1.
- 2. Type **AfterExercise** in the Mark box.
- 3. The subject should exercise to sufficiently elevate breathing rate. Running up and down flights of stairs is a good method. The subject should sit down immediately after the exercise period.
- 4. Click Record. After waiting ten seconds have the subject place the flow head in their mouth and begin breathing. Click the mark button to mark the recording.
- 5. Click the AutoScale All button. Record at least five-six breaths as the subject is recovering from exercise. Remember the baseline of the Lung Volumes channel automatically resets every sixty seconds.
- 6. Type **Forced** in the Mark box. Click the mark button as the subject inhales as deeply as possible. After reaching their maximum inhalation volume, the subject should exhale as quickly and as completely as possible. Blow out as much as possible.
- 7. The subject should return to breathing as normally as possible through the spirometer.
- 8. Click Stop and click Save.

Data Analysis

- 1. Perform the same types of measurements on the data recorded in Exercise 1. Record the measurements in the Journal. Report the appropriate measurements in Tables 2 and 3.
- 2. Determine the values for the calculated parameters taken from the recordings of normal and forced breathing after exercise. Report these values on the tables.

Exercise 3: Breathing Parameters from Other Students

Aim: To measure breathing parameters in other students in your lab group. Obtain data from subjects in other lab groups.

Approximate Time: 20 minutes per subject

Procedure

- 1. Attach a clean flow head and clean air flow tubing to the spirometer for each new subject in your group doing this exercise.
- 2. Open a new data file for the new subject by selecting New on the File menu of the LabScribe program. The Save File dialogue window will appear on the screen if the current data file displayed on the LabScribe window if that file has not been saved recently. Click Yes to save the current file. Click the Save button in the lower right corner of the dialogue window.
- 3. Repeat Exercise 1 with the new subject.

Data Analysis

- 1. Perform the same types of measurements on the data recorded in Exercise 1.
- 2. Record the measurements in the Journal. Report the appropriate measurements in the tables and determine the values for the calculated parameters taken from the recordings of normal and forced breathing. Report the values for each subject on copies in the tables, and on the table being compiled for all subjects in the class.

Questions

- 1. Are the lung volumes the same in all students?
- 2. Combine class data to see whether there is any correlation between tidal volume or vital capacity and gender, smoking, or apparent fitness.

Table HS-1-L2: Mean Breathing Volumes and Rates from a Healthy Subject at Rest and after Exercise

	Resting	After Exercise
Mean Breath Period (sec/breath)		
Breathing Rate (breaths/min)		
Mean Tidal Volume (mls/breath)		
Minute Air Flow Rate (liters/min)		
Max. Normal Air Flow Rate (mls/sec)		
during inhalation		<u> </u>
during exhalation		

Table HS-1-L3: Forced Expiration Volumes and Rates from a Healthy Subject at Rest and after Exercise

	Resting	After Exercise
Lung Volumes (liters)		
Tidal Volume (TV)		
Inspiratory Reserve Volume (IRV)		
Expiratory Reserve Volume (ERV)		
Vital Capacity (VC)		
Forced Expiratory Volume-1sec (FEV ₁)		
Forced Air Flow Rate (mls/sec)		
during inhalation		
during exhalation		
FEV ₁ /FVC Ratio		
FEV ₃ /FVC Ratio		

Questions

Use your Anatomy and Physiology textbook to help determine the correct answers to the following questions.

- 1. Did tidal volume change after exercise? Did inspiratory and expiratory reserves change after exercise?
- 2. Did exercise influence the time taken for each breathing cycle?
- 3. Did the rate of air flow during the inhalation phase increase or decrease with exercise? How can you account for the change?
- 4. Did the rate of air flow during the exhalation phase increase or decrease with exercise—how can you account for the change?
- 5. Did the volume of air passing in and out of the resting subject's lungs each minute increase or decrease due to exercise? If so, was the change due to an increase in the rate of breathing, the depth of breathing (tidal volume), or a combination of both factors?
- 6. Did exercise influence the vital capacity of the individual?
- 7. If the tidal volume changed due to exercise, can this be accounted for by changes in the IRV, the ERV, or a combination of both?
- 8. Compare your data to what is supposed to happen physiologically. How do expected results compare to the observed results? Did you see what is expected?